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Abstract 
 

This review provides a clear overview of fluorine, its introduction into the soil, and its cascading effects on the food chain 

and ecosystem. It focuses on fluorine, the most electronegative element, which has both beneficial and detrimental effects on 

plants and animals and further focuses on the impact of fluorine from single super phosphate fertilizers on agricultural 

landscapes, ecology, and interconnected systems. The literature shows that fluorine has adverse effects on plants, such as 

leaf necrosis and fluorosis, and on animals, such as infertility, dental and skeletal fluorosis, mitochondrial toxicity, and 

enzyme inhibition. The literature also shows that in low pH soils, fluoride solubility is high, leading to its leaching into the 

top soil, and in high pH soils, fluoride is precipitated by calcium ions in the form of calcium fluoride compounds. The review 

highlights a cascading effect of fluorine through the food web. Natural and human-related activities introduce fluorine into 

the soil, where it is absorbed by plants. The element then bioaccumulates as it moves up the food chain, from plants to 

herbivores and then to carnivores. Mitigation strategies for fluoride in soils include phytoremediation, fluoride-tolerant 

plants, fluorine reduction in the SSP manufacturing line, and fluoride sorption using amendments. 
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1. Introduction 

 

Fluorine is a group 17 element on the periodic table and is 

classified as a halogen. It has an atomic number of 9 and a 

mass number of 19. It is the most electronegative element, 

with an electronegativity value of 3.98[1], [2]. It forms the 

least stable and most reactive diatomic gas homoatomic 

bond (Ediss = 158.78kJmol-1) [3]. It is relatively abundant 

in the earth’s crust (525ppm) and is ranked 13th among all 

elements, existing in chemically bonded forms in different 

minerals [4]. It is both an essential and harmful element [5]. 

It is a biogenic element that is essential for human health and 

biota in natural water [6]. Fluoride ions are termed double-

edged swords because of their valuable use in the production 

of anhydrous hydrogen fluoride, lithium-ion batteries, and 

bacterial growth inhibition, and also their detrimental effects 

on both plants and animals, such as lighter leaf color, stunted 

growth, dental fluorosis, and  prolonged larval 

development[7], [8], [9], [10], [11]. Excessive uptake of 

fluorine above the prescribed 1.5 mg/l by the World Health 

Organization causes detrimental effects such as skeletal 

fluorosis, which occurs when fluoride levels become toxic, 

leading to osteosclerosis and deformities in the bone, 

resulting in crippling pain and debility [12], [13], [14].  

Current methods used for fluoride treatment include 

adsorption techniques, chemical treatment, and membrane 

technology [15]. Other methods employed for fluoride ion 

removal include biodegradation and electrocoagulation [16]. 

However, electrocoagulation and membrane technology 

methods are expensive because of their high energy costs 

[16]. 

 

2. Literature Review  

 

The review was conducted in the following steps: 

investigating sources of occurrence of fluorine ions, 

analyzing how fluorine is produced during SSP production, 

outlining the methods of fluoride detection, investigating 

fate of fluoride in agricultural landscapes, the fluoride 

impact on interconnected systems and lastly fluorine 

mitigation and sustainable management strategies. This was 

achieved through reviewing literature through online 

databases such as Springer, Taylor and Francis and Google 

Scholar. The articles inclusion criteria were: all peer 

reviewed past articles with relevant information about 

fluorine, all English peer reviewed articles with necessary 

information contributing to this review, book chapters with 

relevant substantial information, and the opposite of the 

inclusion criteria was the exclusion criteria. 
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3. Sources of Occurrence of Fluoride Ions in Nature 

 

There are various sources of fluoride ions in nature, 

including: geological sources, water sources, and volcanic 

activity. 

 

3.1 Geological sources: These are mainly minerals and 

rocks, such as fluorite (CaF2), cryolite (Na3AlF6), and 

fluorapatite (Ca5(PO4)3F) [13], [17]. Fluorapatite is an 

igneous rock used in the fertilizer manufacture. It contains 

approximately 2 – 4% fluorine [18], [19]. Weathering of 

fluoride ore and marine aerosols releases fluoride ions into 

the soil [20]. Marine aerosols contribute approximately 0.4 

– 1Mt of fluorine to the atmosphere annually 

[21].Approximately 1 – 4% of fluoride ions are released into 

the soil through fertilizers. Fumigants and insecticides 

containing fluoride ion-containing compounds, such as 

sodium silicofluoride, sulfuryl fluoride, barium 

fluorosilicate, and fluralin, also contribute to fluoride 

accumulation in soils [22]. 

 

3.2 Water sources: This is a result of industrial effluent 

discharges from coal, which has 295 mg/L fluorine [23], 

fertilizer, and paint industries as well as from communal 

discharge. The following are some of the factors responsible 

for fluoride contamination in water sources: chemical 

properties of water, nature of rocks, leakage of shallow 

water, and others [13], [24].  

 

3.3 Volcanic activity: Volcanic eruptions release fluoride 

ions in the form of hydrogen fluoride through volcanic 

degassing, which is deposited on the earth’s crust and, with 

time, leaches into the soil and eventually reaches the water 

table [25]. 

 

4. Fluorine from Single Super Phosphate (SSP) Fertilizer 

 

Single superphosphate is a fertilizer produced from 

phosphate rock, mainly fluorapatite, which is an igneous 

rock. The rock contains 2 – 4% fluorine [18], [19]. During 

SSP manufacturing, a series of reactions occur in which 

fluoride ions are removed from the process, but at the end of 

the process.  [26] reported that 1 – 1.5% of fluoride ions 

remained in the fertilizer. Figure 1 shows the fate of fluorine 

during SSP production by [27].

 

 
Figure 1. Fate of fluorine during SSP production [27] 

 

The following equations (1 and 2) show the reaction steps 

responsible for fluoride ion removal in the SSP 

manufacturing process [19].

 

𝐶𝑎𝐹2. 3𝐶𝑎3(𝑃𝑂4))2 + 7𝐻2𝑆𝑂4  → 3𝐶𝑎(𝐻2𝑃𝑂4)2 + 7𝐶𝑎𝑆𝑂4 + 𝐻𝐹 ↑ (1) 

  

𝐶𝑎5(𝑃𝑂4)3𝐹 + 5𝐻2𝑆𝑂4 → 3𝐻3𝑃𝑂4 + 5𝐶𝑎𝑆𝑂4 ↓ +𝐻𝐹 ↑ (2) 

The produced hydrogen fluoride reacts with the added silica 

(SiO2) to produce hydrofluorosilicic acid, and silicon 

tetrafluoride, and water, as shown in Equations 3 and 4: 

 

6𝐻𝐹 + 𝑆𝑖𝑂2 → 𝐻2𝑆𝑖𝐹6 + 2𝐻2𝑂 (3) 

  

4𝐻𝐹 + 𝑆𝑖𝑂2 ↔ 𝑆𝑖𝐹4 + 2𝐻2𝑂 (4) 

 

5. Methods of Fluoride Detection 

 

Fluoride detection is mainly performed using analytical 

methods. According to [13], mass spectrometry, ion 
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selective electrode, and ion chromatography are the methods 

used. Fluoride concentration is detected using chromogenic 

and fluorogenic sensors in analytical methods. 

 

5.1 Mass spectrometry: An analytical technique that uses the 

measurement of the mass-to-charge ratio of ions [28]. The 

first step is the production of ions of the compound in the gas 

phase, typically by electron ionization [29]. Detection of 

fluoride ions using standard mass spectrometry can be 

difficult because of its low ionization efficiency and isobaric 

interferences [30]. Therefore, gas chromatography – mass 

spectrometry (GC-MS) [31], inductively coupled plasma 

mass spectrometry (ICP – MS) [32], tandem mass 

spectroscopy (ICP – MS/MS), and combustion ion 

chromatography coupled with mass spectrometry (CIC – 

MS) [32] are specialized methods that have been developed 

for mass spectrometry.  

 

5.2 Ion selective electrode: This electrochemical method that 

uses the direct potentiometry principle, where ta potential 

difference is generated across a selective membrane that is 

directly proportional to the log of F- activity in the 

solution[33]. The most common single crystal membrane 

used is lanthanide fluoride (LaF3), where an electrical 

potential is created by the passage of only F- from the 

membrane and then measured against a reference electrode 

[34]. 

 

5.3 Ion chromatography: An analysis technique used to 

analyze ions by separating them based on their affinity for 

the mobile phase (an eluent) and stationary phase (an ion-

exchange resin) [35]. A fluoride sample is introduced into an 

ion chromatograph system, and the separation of F- from 

other ions, such as Cl-, Br-, and SO42-, occurs as the sample 

passes through the ion – exchange column [36]. Eluents, 

such as sodium carbonate/bicarbonate solutions, are used in 

this process. The F- concentration was quantified using the 

peaks generated by the calibration curve. 

 

6. Fate of Fluorine in Agricultural Landscapes 

 

SSP fertilizers are applied to soils for plant growth. The 

fluorine content in SSP fertilizer from ZIMPHOS, Msasa, 

Zimbabwe is in the range of 1 – 2%, and when applied to 

soils, fluorine leaches into the soil, water system, and is 

taken up by plants, resulting in dangerous effects to both 

plants and animals.  

 

6.1 Soil accumulation: Fluorine applied to the soil through 

SSP fertilizer accumulates in the top soil [37]. Fluorine in 

soil is in the range of 150 – 400ppm but for contaminated 

soils, the figure rises to 1000 – 1500ppm [38]. Clay minerals, 

aluminium and iron hydroxides, and oxides contribute to the 

strong sorption of F- into the top soil. The continuous 

application of SSP with high fluorine content eventually 

leads to the further accumulation of F- to alarming levels 

[37]. Fluorine mobility is influenced by factors such as soil 

pH, clay composition, and the presence of calcium carbonate 

(CaCO3) [39]. At low pH values, the potential for its 

leaching is higher due to the formation of soluble complexes 

with iron or aluminium and at high pH values, it reacts with 

calcium ions and precipitates as calcium fluoride (CaF2) 

[39]. 

 

6.2 Water contamination: After SSP is applied to soil, 

fluorine can be leached into groundwater and further 

transported via surface runoff due to high rainfall, low 

buffering capacity, or certain pH conditions [40]. Fluorine 

leached into groundwater (GW) (˃1.5 mg/L concentration) 

is a cause for concern if GW is a drinking water source, as it 

poses a significant public health and environmental threat 

[41], [42].  

 

7. Ecological Impact of Fluorine 

 

High levels of fluorine from SSP fertilizers have detrimental 

ecological impacts on soil microorganisms and nutrient 

cycling, phototoxicity, plant uptake, and livestock and 

wildlife.  

 

7.1 Effects on soil microorganisms and nutrient cycling: 

High levels of fluorine are toxic to microorganisms, 

affecting the microbial structure, resulting in the disruption 

of biogeochemical processes such as organic matter 

decomposition, phosphorus solubilization, and nitrogen 

fixation. Microorganisms assist in transferring and recycling 

nutrients among several reservoirs during the mineralization 

process [38]. Fluorine alters the microbial communities of 

soil by enzyme inhibition, acting as phosphate analogs, and 

inhibiting the glycolytic cycle [38], [43]. 

 

7.2 Phytotoxicity and plant uptake: Fluorine is taken up by 

plants through the roots, and its influence on plants alters 

their chemical composition and leads to plant deterioration 

[44]. Fluorine intrudes and affects plant leaves because of its 

high solubility and may stop photosynthesis in plants [44]. 

When fluoride ions are taken up by other roots, they move 

up the plant through transpiration and enter the leaves 

through the stomata, where they cause marginal and tip 

necrosis and fluorosis [45]. Excessive fluoride levels lead to 

fruit spoilage [46].  

 

7.3 Impact on livestock and wildlife: A study by [47] 

involved two horses that drank water with high fluorine 

concentrations, and they suffered multiple joint and dental 

defects. Microscopic analyses revealed cement necrosis and 

hypercementosis in horses. The chief sources of fluorine in 

animals are vegetation in fluoride-contaminated soils, water 

contaminated with fluoride, and feed supplements with 

excess fluoride [48]. Excess fluoride alters the architecture 

and physiology of animal organs. The liver, which detoxifies 

toxic substances, is affected by excess fluoride ions in the 

body [48].  Acute intoxication of cattle by excess fluorine 

causes constipation, ruminal statis, and gastroenteritis, 

which are due to the formation of hydrofluoric acid in the 

stomach [49]. The nervous system of cattle also affected by 

excess fluorine, resulting in weakness, muscle tremors, 

hyperesthesia, pupillary dilatation, and constant chewing 

[49]. Post-calving anestrous and decline in fertility when 8 – 

12ppm of fluorine diet is fed to cattle, overshooting the 

normal 0.2 mg fluorine per deciliter concentration in cattle 

shows a reproductive defect due to excess fluorine [49].  
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8. Fluorine Impact in Interconnected Systems 

 

The fluorine footprint in fertilizer extends into the food 

chain, where plants affected by fluorine are eaten by 

herbivores/grazers and omnivores, which are eaten by 

carnivores, leading to biomagnification and bioaccumulation 

in the food web. In humans, fluoride interacts: 

 

 Enzymes inhibit their activity in the millimolar range 

and stimulate cell proliferation in the micromolar range 

[50]. 

 Cells by superoxide anion generation, mitochondrial 

toxicity, and modification of the release of 

neurotransmitters acetylcholine [51], [52]. 

 Teeth and bones causing dental and skeletal fluorosis. 

Ingestion of over 8 mg/L of fluoride affects the skeletal 

system [23]. Dental fluorosis ends at eight years in 

humans due to the complete maturation of the enamel 

[50]. 

 The reproductive system causing infertility in men when 

they drink water with a high fluoride concentration of 

approximately 35 mg/L [50]. 

 Excessive fluoride affects the brain, disrupts the 

secretion of thyroxin hormones, increasing density and 

bone mass and affects the nervous system [23]. 

 Excessive fluoride can cause DNA damage by inducing 

oxidative stress which leads to generation of reactive 

oxygen species (ROS) [53] and also cause liver 

apoptosis [54] 

 Excessive fluoride also cause epigenetic alterations in 

humans, which alters gene expression without alteration 

of DNA sequence [55] 

 

9. Mitigation and Sustainable Management Strategies 

 

To address the impact of the fluorine footprint from SSP 

fertilizer sustainable mitigation and management practices 

and policies that protect the environment and its ecosystem 

must be outlined. According to [39], fluoride mitigation 

strategies can be in-situ or ex-situ treatment method. In-situ 

method proved key in reducing fluoride concentration in 

Anantapur district in India by use of artificial recharge. The 

following are also fluoride mitigation methods:  

 

9.1 Fluorine reduction during SSP manufacturing: It is 

crucial to reduce the fluorine content in the final product 

during the production. Most of the fluorine is removed 

during phosphate rock pretreatment through flocculation and 

during the acidulation stage, where fluorine leaves as HF and 

CaF2. If it is stoichiometrically impossible to remove more 

fluorine during these processes, another unit operation, such 

as a calcination or leaching unit, must be added to reduce 

fluorine to approximately 0.1% in the final SSP product. 

 

9.2 Soil remediation and management: As fluorine 

precipitates at high pH levels, increasing the soil pH can 

immobilize fluoride ions and precipitate them as CaF2 [39]. 

The sorption of fluoride using amendments such as red mud, 

fly ash, or biochar, can reduce its bioavailability [56]. There 

is a need to apply a circular economy approach to avoid 

secondary contamination where fluorine is removed from 

the soil to the amendments. Phytoremediation techniques 

using plants with high fluorine accumulation or tolerance to 

extract fluorine from soil can be used [57]. This method can 

be slow and requires close attention to the resultant biomass. 

Plants such as tea, spinach, and potatoes are known to have 

high fluorine tolerance [45], [58].  A study by [59], which 

was done in Southeast of Tunisia, showed that there was 37 

– 360mg/kg accumulation of fluoride by plants. 

Additionally, planting crops that are less susceptible to 

fluoride uptake can minimize the risk of food contamination 

[60]. 

 

 

Table 1. Comparison of the mitigation strategies 

Fluorine reduction during SSP manufacturing Fluorine reduction through soil remediation and management 

It is a proactive approach removing fluorine at the source Addresses the fluoride in soil issue at hand 

Significant reduction of fluorine accumulation in the soil. Has diverse options for removal and reduces bioavailability 

of F- 

There is direct control through quality control in the 

process 

Relatively cheap and a green approach that uses natural 

bioprocesses 

Technically challenging and resource intensive Does not remove the fluorine in the but immobilizes 

Does not address fluorine contamination from other 

sources 

The sorption amendments may cause secondary 

contamination for example fly ash might contain heavy 

metals 

Capital intensive and high operational costs It is a slow process and time consuming 

10. Conclusion & Future Research  

 

The comprehensive review of the fluorine footprint from 

SSP underscores its pervasion and detrimental effects across 

agricultural landscapes, ecology, and interconnected 

systems. Continuous accumulation of fluorine in soils leads 

to surface runoff contaminating water systems that extend to 

vegetation, plants, animals, and humans, thereby furthering 

bioaccumulation and biomagnification through the food 

web. Further research is needed to investigate the stability 

and remobilization of CaF2 precipitated under dynamic 

environmental conditions. There is also a need to develop 

models for predicting fluorine behavior in soils which would 

assist in identifying potential contamination hotspots, 

conducting future risk assessments and appetite and 

evaluating the effectiveness of proposed long-term 



 International Journal of Darshan Institute on Engineering Research and Emerging Technologies 

Vol. 14, No. 2, 2025, pp. 59-66 

63 

 

mitigation strategies. Silent impacts, such as neurotoxicity 

and bone fluorosis due to chronic low-level fluoride in both 

plants and animals, need to be investigated. There is also 

need to develop rapid, cost effective and in-situ monitoring 

tools for fluoride. It is therefore recommended to: 

 

 Develop a more benign and atom economical methods 

for incorporating fluorine into organic molecules. 

 Designing more sophisticated fluorinated nanoparticles 

and polymers for targeted drug delivery targeting the 

brain or tumors 

 Synthesizing fluorinated probes for bioimaging 

 

Nomenclature 

 

IJDI-ERET - International Journal of Darshan Institute on 

Engineering Research and Emerging Technologies 

DNA – deoxyribonucleic acid 
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