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Abstract

This review provides a clear overview of fluorine, its introduction into the soil, and its cascading effects on the food chain
and ecosystem. It focuses on fluorine, the most electronegative element, which has both beneficial and detrimental effects on
plants and animals and further focuses on the impact of fluorine from single super phosphate fertilizers on agricultural
landscapes, ecology, and interconnected systems. The literature shows that fluorine has adverse effects on plants, such as
leaf necrosis and fluorosis, and on animals, such as infertility, dental and skeletal fluorosis, mitochondrial toxicity, and
enzyme inhibition. The literature also shows that in low pH soils, fluoride solubility is high, leading to its leaching into the
top soil, and in high pH soils, fluoride is precipitated by calcium ions in the form of calcium fluoride compounds. The review
highlights a cascading effect of fluorine through the food web. Natural and human-related activities introduce fluorine into
the soil, where it is absorbed by plants. The element then bioaccumulates as it moves up the food chain, from plants to
herbivores and then to carnivores. Mitigation strategies for fluoride in soils include phytoremediation, fluoride-tolerant

plants, fluorine reduction in the SSP manufacturing line, and fluoride sorption using amendments.
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1. Introduction

Fluorine is a group 17 element on the periodic table and is
classified as a halogen. It has an atomic number of 9 and a
mass number of 19. It is the most electronegative element,
with an electronegativity value of 3.98[1], [2]. It forms the
least stable and most reactive diatomic gas homoatomic
bond (Ediss = 158.78kJmol-1) [3]. It is relatively abundant
in the earth’s crust (525ppm) and is ranked 13th among all
elements, existing in chemically bonded forms in different
minerals [4]. It is both an essential and harmful element [5].
It is a biogenic element that is essential for human health and
biota in natural water [6]. Fluoride ions are termed double-
edged swords because of their valuable use in the production
of anhydrous hydrogen fluoride, lithium-ion batteries, and
bacterial growth inhibition, and also their detrimental effects
on both plants and animals, such as lighter leaf color, stunted
growth, dental fluorosis, and prolonged larval
development[7], [8], [9], [10], [11]. Excessive uptake of
fluorine above the prescribed 1.5 mg/l by the World Health
Organization causes detrimental effects such as skeletal
fluorosis, which occurs when fluoride levels become toxic,
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leading to osteosclerosis and deformities in the bone,
resulting in crippling pain and debility [12], [13], [14].
Current methods used for fluoride treatment include
adsorption techniques, chemical treatment, and membrane
technology [15]. Other methods employed for fluoride ion
removal include biodegradation and electrocoagulation [16].
However, electrocoagulation and membrane technology
methods are expensive because of their high energy costs
[16].

2. Literature Review

The review was conducted in the following steps:
investigating sources of occurrence of fluorine ions,
analyzing how fluorine is produced during SSP production,
outlining the methods of fluoride detection, investigating
fate of fluoride in agricultural landscapes, the fluoride
impact on interconnected systems and lastly fluorine
mitigation and sustainable management strategies. This was
achieved through reviewing literature through online
databases such as Springer, Taylor and Francis and Google
Scholar. The articles inclusion criteria were: all peer
reviewed past articles with relevant information about
fluorine, all English peer reviewed articles with necessary
information contributing to this review, book chapters with
relevant substantial information, and the opposite of the
inclusion criteria was the exclusion criteria.
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3. Sources of Occurrence of Fluoride lons in Nature

There are various sources of fluoride ions in nature,
including: geological sources, water sources, and volcanic
activity.

3.1 Geological sources: These are mainly minerals and
rocks, such as fluorite (CaF2), cryolite (Na3AIF6), and
fluorapatite (Ca5(PO4)3F) [13], [17]. Fluorapatite is an
igneous rock used in the fertilizer manufacture. It contains
approximately 2 — 4% fluorine [18], [19]. Weathering of
fluoride ore and marine aerosols releases fluoride ions into
the soil [20]. Marine aerosols contribute approximately 0.4
— 1Mt of fluorine to the atmosphere annually
[21].Approximately 1 — 4% of fluoride ions are released into
the soil through fertilizers. Fumigants and insecticides
containing fluoride ion-containing compounds, such as
sodium  silicofluoride,  sulfuryl  fluoride,  barium
fluorosilicate, and fluralin, also contribute to fluoride
accumulation in soils [22].

3.2 Water sources: This is a result of industrial effluent
discharges from coal, which has 295 mg/L fluorine [23],

fertilizer, and paint industries as well as from communal
discharge. The following are some of the factors responsible
for fluoride contamination in water sources: chemical
properties of water, nature of rocks, leakage of shallow
water, and others [13], [24].

3.3 Volcanic activity: Volcanic eruptions release fluoride
ions in the form of hydrogen fluoride through volcanic
degassing, which is deposited on the earth’s crust and, with
time, leaches into the soil and eventually reaches the water
table [25].

4. Fluorine from Single Super Phosphate (SSP) Fertilizer

Single superphosphate is a fertilizer produced from
phosphate rock, mainly fluorapatite, which is an igneous
rock. The rock contains 2 — 4% fluorine [18], [19]. During
SSP manufacturing, a series of reactions occur in which
fluoride ions are removed from the process, but at the end of
the process. [26] reported that 1 — 1.5% of fluoride ions
remained in the fertilizer. Figure 1 shows the fate of fluorine
during SSP production by [27].

Phosphate Rock

2H2S0.
[Cas(POu)2)

Fate of Fluorine During SSP Production

(F: m kg total
fluoride)

Gaseous emission

(F: z kg as HF/
H2SiFe/ SiF)

Single Super Phosphate (SSP)
[Ca(H2P04)2.2CaS0s]

(F: (m-z) kg; as CaF2/HF/H:SiFs)

Figure 1. Fate of fluorine during SSP production [27]

The following equations (1 and 2) show the reaction steps
responsible for fluoride ion removal in the SSP
manufacturing process [19].

CaF,.3Caz(P0y); + 7H,S0, — 3Ca(H,P0,), + 7€aS0, + HF 1

Cas(PO,)sF + 5H,S0, - 3H;PO, + 5CaS0, L +HF 1

The produced hydrogen fluoride reacts with the added silica
(Si02) to produce hydrofluorosilicic acid, and silicon
tetrafluoride, and water, as shown in Equations 3 and 4:

6HF + Si0, — H,SiF, + 2H,0 ?)
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4HF + Si0, < SiF, + 2H,0 (4)
5. Methods of Fluoride Detection

Fluoride detection is mainly performed using analytical
methods. According to [13], mass spectrometry, ion
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selective electrode, and ion chromatography are the methods
used. Fluoride concentration is detected using chromogenic
and fluorogenic sensors in analytical methods.

5.1 Mass spectrometry: An analytical technique that uses the
measurement of the mass-to-charge ratio of ions [28]. The
first step is the production of ions of the compound in the gas
phase, typically by electron ionization [29]. Detection of
fluoride ions using standard mass spectrometry can be
difficult because of its low ionization efficiency and isobaric
interferences [30]. Therefore, gas chromatography — mass
spectrometry (GC-MS) [31], inductively coupled plasma
mass spectrometry (ICP — MS) [32], tandem mass
spectroscopy (ICP — MS/MS), and combustion ion
chromatography coupled with mass spectrometry (CIC —
MS) [32] are specialized methods that have been developed
for mass spectrometry.

5.2 lon selective electrode: This electrochemical method that
uses the direct potentiometry principle, where ta potential
difference is generated across a selective membrane that is
directly proportional to the log of F- activity in the
solution[33]. The most common single crystal membrane
used is lanthanide fluoride (LaF3), where an electrical
potential is created by the passage of only F- from the
membrane and then measured against a reference electrode
[34].

5.3 lon chromatography: An analysis technique used to
analyze ions by separating them based on their affinity for
the mobile phase (an eluent) and stationary phase (an ion-
exchange resin) [35]. A fluoride sample is introduced into an
ion chromatograph system, and the separation of F- from
other ions, such as Cl-, Br-, and SO42-, occurs as the sample
passes through the ion — exchange column [36]. Eluents,
such as sodium carbonate/bicarbonate solutions, are used in
this process. The F- concentration was quantified using the
peaks generated by the calibration curve.

6. Fate of Fluorine in Agricultural Landscapes

SSP fertilizers are applied to soils for plant growth. The
fluorine content in SSP fertilizer from ZIMPHOS, Msasa,
Zimbabwe is in the range of 1 — 2%, and when applied to
soils, fluorine leaches into the soil, water system, and is
taken up by plants, resulting in dangerous effects to both
plants and animals.

6.1 Soil accumulation: Fluorine applied to the soil through
SSP fertilizer accumulates in the top soil [37]. Fluorine in
soil is in the range of 150 — 400ppm but for contaminated
soils, the figure rises to 1000 — 1500ppm [38]. Clay minerals,
aluminium and iron hydroxides, and oxides contribute to the
strong sorption of F- into the top soil. The continuous
application of SSP with high fluorine content eventually
leads to the further accumulation of F- to alarming levels
[37]. Fluorine mobility is influenced by factors such as soil
pH, clay composition, and the presence of calcium carbonate
(CaCO03) [39]. At low pH values, the potential for its
leaching is higher due to the formation of soluble complexes
with iron or aluminium and at high pH values, it reacts with
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calcium ions and precipitates as calcium fluoride (CaF2)
[39].

6.2 Water contamination: After SSP is applied to soil,
fluorine can be leached into groundwater and further
transported via surface runoff due to high rainfall, low
buffering capacity, or certain pH conditions [40]. Fluorine
leached into groundwater (GW) (>1.5 mg/L concentration)
is a cause for concern if GW is a drinking water source, as it
poses a significant public health and environmental threat
[41], [42].

7. Ecological Impact of Fluorine

High levels of fluorine from SSP fertilizers have detrimental
ecological impacts on soil microorganisms and nutrient
cycling, phototoxicity, plant uptake, and livestock and
wildlife.

7.1 Effects on soil microorganisms and nutrient cycling:
High levels of fluorine are toxic to microorganisms,
affecting the microbial structure, resulting in the disruption
of biogeochemical processes such as organic matter
decomposition, phosphorus solubilization, and nitrogen
fixation. Microorganisms assist in transferring and recycling
nutrients among several reservoirs during the mineralization
process [38]. Fluorine alters the microbial communities of
soil by enzyme inhibition, acting as phosphate analogs, and
inhibiting the glycolytic cycle [38], [43].

7.2 Phytotoxicity and plant uptake: Fluorine is taken up by
plants through the roots, and its influence on plants alters
their chemical composition and leads to plant deterioration
[44]. Fluorine intrudes and affects plant leaves because of its
high solubility and may stop photosynthesis in plants [44].
When fluoride ions are taken up by other roots, they move
up the plant through transpiration and enter the leaves
through the stomata, where they cause marginal and tip
necrosis and fluorosis [45]. Excessive fluoride levels lead to
fruit spoilage [46].

7.3 Impact on livestock and wildlife: A study by [47]
involved two horses that drank water with high fluorine
concentrations, and they suffered multiple joint and dental
defects. Microscopic analyses revealed cement necrosis and
hypercementosis in horses. The chief sources of fluorine in
animals are vegetation in fluoride-contaminated soils, water
contaminated with fluoride, and feed supplements with
excess fluoride [48]. Excess fluoride alters the architecture
and physiology of animal organs. The liver, which detoxifies
toxic substances, is affected by excess fluoride ions in the
body [48]. Acute intoxication of cattle by excess fluorine
causes constipation, ruminal statis, and gastroenteritis,
which are due to the formation of hydrofluoric acid in the
stomach [49]. The nervous system of cattle also affected by
excess fluorine, resulting in weakness, muscle tremors,
hyperesthesia, pupillary dilatation, and constant chewing
[49]. Post-calving anestrous and decline in fertility when 8 —
12ppm of fluorine diet is fed to cattle, overshooting the
normal 0.2 mg fluorine per deciliter concentration in cattle
shows a reproductive defect due to excess fluorine [49].
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8. Fluorine Impact in Interconnected Systems

The fluorine footprint in fertilizer extends into the food
chain, where plants affected by fluorine are eaten by
herbivores/grazers and omnivores, which are eaten by
carnivores, leading to biomagnification and bioaccumulation
in the food web. In humans, fluoride interacts:

e Enzymes inhibit their activity in the millimolar range
and stimulate cell proliferation in the micromolar range
[50].

e Cells by superoxide anion generation, mitochondrial
toxicity, and modification of the release of
neurotransmitters acetylcholine [51], [52].

e Teeth and bones causing dental and skeletal fluorosis.
Ingestion of over 8 mg/L of fluoride affects the skeletal
system [23]. Dental fluorosis ends at eight years in
humans due to the complete maturation of the enamel
[50].

e  Thereproductive system causing infertility in men when
they drink water with a high fluoride concentration of
approximately 35 mg/L [50].

e Excessive fluoride affects the brain, disrupts the
secretion of thyroxin hormones, increasing density and
bone mass and affects the nervous system [23].

e Excessive fluoride can cause DNA damage by inducing
oxidative stress which leads to generation of reactive
oxygen species (ROS) [53] and also cause liver
apoptosis [54]

e Excessive fluoride also cause epigenetic alterations in
humans, which alters gene expression without alteration
of DNA sequence [55]

9. Mitigation and Sustainable Management Strategies

To address the impact of the fluorine footprint from SSP
fertilizer sustainable mitigation and management practices

and policies that protect the environment and its ecosystem
must be outlined. According to [39], fluoride mitigation
strategies can be in-situ or ex-situ treatment method. In-situ
method proved key in reducing fluoride concentration in
Anantapur district in India by use of artificial recharge. The
following are also fluoride mitigation methods:

9.1 Fluorine reduction during SSP manufacturing: It is
crucial to reduce the fluorine content in the final product
during the production. Most of the fluorine is removed
during phosphate rock pretreatment through flocculation and
during the acidulation stage, where fluorine leaves as HF and
CaF2. If it is stoichiometrically impossible to remove more
fluorine during these processes, another unit operation, such
as a calcination or leaching unit, must be added to reduce
fluorine to approximately 0.1% in the final SSP product.

9.2 Soil remediation and management: As fluorine
precipitates at high pH levels, increasing the soil pH can
immobilize fluoride ions and precipitate them as CaF2 [39].
The sorption of fluoride using amendments such as red mud,
fly ash, or biochar, can reduce its bioavailability [56]. There
is a need to apply a circular economy approach to avoid
secondary contamination where fluorine is removed from
the soil to the amendments. Phytoremediation techniques
using plants with high fluorine accumulation or tolerance to
extract fluorine from soil can be used [57]. This method can
be slow and requires close attention to the resultant biomass.
Plants such as tea, spinach, and potatoes are known to have
high fluorine tolerance [45], [58]. A study by [59], which
was done in Southeast of Tunisia, showed that there was 37
— 360mg/kg accumulation of fluoride by plants.
Additionally, planting crops that are less susceptible to
fluoride uptake can minimize the risk of food contamination
[60].

Table 1. Comparison of the mitigation strategies

Fluorine reduction during SSP manufacturing

Fluorine reduction through soil remediation and management

It is a proactive approach removing fluorine at the source

Addresses the fluoride in soil issue at hand

Significant reduction of fluorine accumulation in the soil.

Has diverse options for removal and reduces bioavailability

of F

There is direct control through quality control in the
process

Relatively cheap and a green approach that uses natural
bioprocesses

Technically challenging and resource intensive

Does not remove the fluorine in the but immobilizes

Does not address fluorine contamination from other
sources

The sorption amendments may cause secondary
contamination for example fly ash might contain heavy
metals

Capital intensive and high operational costs

It is a slow process and time consuming

10. Conclusion & Future Research

The comprehensive review of the fluorine footprint from
SSP underscores its pervasion and detrimental effects across
agricultural landscapes, ecology, and interconnected
systems. Continuous accumulation of fluorine in soils leads
to surface runoff contaminating water systems that extend to
vegetation, plants, animals, and humans, thereby furthering
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bioaccumulation and biomagnification through the food
web. Further research is needed to investigate the stability
and remobilization of CaF2 precipitated under dynamic
environmental conditions. There is also a need to develop
models for predicting fluorine behavior in soils which would
assist in identifying potential contamination hotspots,
conducting future risk assessments and appetite and
evaluating the effectiveness of proposed long-term
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mitigation strategies. Silent impacts, such as neurotoxicity
and bone fluorosis due to chronic low-level fluoride in both
plants and animals, need to be investigated. There is also
need to develop rapid, cost effective and in-situ monitoring
tools for fluoride. It is therefore recommended to:

e Develop a more benign and atom economical methods
for incorporating fluorine into organic molecules.

e Designing more sophisticated fluorinated nanoparticles
and polymers for targeted drug delivery targeting the
brain or tumors

e Synthesizing fluorinated probes for bioimaging

Nomenclature
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